Navier-Stokes equation

$$\Large \dfrac{\partial\vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}}\cdot \nabla)\vec{\mathbf{v}} = – \dfrac{\nabla p}{\rho} + \nu \nabla^2 \vec{\mathbf{v}}$$

On the left side of the equation is the acceleration part.

$\dfrac{\partial\vec{\mathbf{v}}}{\partial t} \text{ – unsteady term}$

$(\vec{\mathbf{v}}\cdot \nabla)\vec{\mathbf{v}} \text{ – convective acceleration, nonlinear term}$

$\dfrac{\nabla p}{\rho} \text{ – pressure gradient, density is const.}$

$\nu \nabla^2 \vec{\mathbf{v}} \text{ – viscosity of newtonian fluid, 2nd order term}$

We solve 2nd order, nonlinear, partial derivative equation.

As solution we expect:

  • The velocity field (vectors)
  • The associated pressure (scalar)

Euler equation

For inviscid fluid $\Rightarrow \nu = 0$

Then we get the Euler equation:

$$\Large \dfrac{\partial\vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}}\cdot \nabla)\vec{\mathbf{v}} = – \dfrac{\nabla p}{\rho}$$

Model and discretize

1 – The mathematical model – Set of partial differential or integral-differential equation

Target application

  • incompressible
  • inviscid
  • turbulent
  • 2D or 3D

2 – The discretization method

Method for approximating the PDES by a system of algebraic equations

$\mathcal{L}[u(\underline{x})] = f(\underline{x}) \Rightarrow A\underline{x} = b$

Differential operator L is a function of x

  • finite difference, FD
  • finite volume, FV
  • finite elements, FE
  • spectral methods
  • boundary element method, BEM
  • particle methods

3 – Analyze the numerical scheme

All numerical schemes must satisfy certain conditions to be accepted:

  • consistency
  • stability
  • convergence

Need for analyze the accuracy

4 – Solve

Obtain grid/point values of all flow variables

  • time-dependent $\Rightarrow$ DDES – time integrators
  • steady $\Rightarrow$ algebraic system of equations – linear solvers

Differential form of the Fluid Equations

1 – Conservation of Mass

For a system: $\dfrac{\mathrm d M_{sys}}{\mathrm d t}=0$

For a Control Volume: $\dfrac{\partial}{\partial t}\int_{cv}\rho\cdot\mathrm d V + \int_{cs}\rho\vec{\mathbf{v}}\cdot\hat{n}\cdot\mathrm d A = 0$

$\dfrac{\partial}{\partial t}\int_{cv}\rho\cdot\mathrm d V$ – Rate of change of mass in Control volume CV

$\int_{cs}\rho\vec{\mathbf{v}}\cdot\hat{n}\cdot\mathrm d A$ – Net rate of flow of mass across Control surfaces CS ($\hat{n}$ – normal, A – Area)

<u>Differential Form</u> – consider a small fluid element $\delta x \delta y \delta z$

  1. $\dfrac{\partial}{\partial t}\int_{cv}\rho\cdot\mathrm d V = \dfrac{\partial\rho}{\partial t}\delta x \delta y \delta z$, $\rho$ is uniform in $\delta V$

  2. Rate of mass flow: in the xyz-direction

$\left[ \rho u – \dfrac{\delta}{\delta x}(\rho u)\dfrac{\delta x}{2}\right]\delta y \delta z$ $\rightarrow$

$\rightarrow$ $\left[ \rho u + \dfrac{\delta}{\delta x}(\rho u)\dfrac{\delta x}{2}\right]\delta y \delta z$

Net rate of mass outflow in

x-direction: $\dfrac{\delta}{\delta x}(\rho u)\delta x \delta y \delta z$

y-direction: $\dfrac{\delta}{\delta y}(\rho v)\delta x \delta y \delta z$

z-direction: $\dfrac{\delta}{\delta z}(\rho w)\delta x \delta y \delta z$

$\Rightarrow \dfrac{\delta \rho}{\delta t} + \dfrac{\delta}{\delta x}(\rho u) + \dfrac{\delta}{\delta y}(\rho v)+\dfrac{\delta}{\delta z}(\rho w) = 0$

$\text{Vector notation}\rightarrow \dfrac{\delta \rho}{\delta t} + \nabla \cdot\rho\vec{\mathbf{v}} = 0$